Abstract

This work presents a combination of a teach-and-replay visual navigation and Monte Carlo localization methods. It improves a reliable teach-and-replay navigation method by replacing its dependency on precise dead-reckoning by introducing Monte Carlo localization to determine robot position along the learned path. In consequence, the navigation method becomes robust to dead-reckoning errors, can be started from at any point in the map and can deal with the ‘kidnapped robot’ problem. Furthermore, the robot is localized with MCL only along the taught path, i.e. in one dimension, which does not require a high number of particles and significantly reduces the computational cost. Thus, the combination of MCL and teach-and-replay navigation mitigates the disadvantages of both methods. The method was tested using a P3-AT ground robot and a Parrot AR.Drone aerial robot over a long indoor corridor. Experiments show the validity of the approach and establish a solid base for continuing this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.