Abstract

To date, high frequency multipliers have been designed and analyzed using harmonic-balance codes incorporating equivalent circuit models for the diodes. These codes, however, are unable to accurately predict circuit performance at frequencies above 100 GHz and do not allow a means for studying the physics of electron transport. In order to analyze these high frequency Schottky doublers, a novel harmonic-balance technique has been integrated into a drift-diffusion numerical simulator and, for the first time, a Monte Carlo numerical device simulator. The unification of the numerical device simulator with the harmonic-balance algorithm allows for the self-consistent study of electron transport phenomena as well as the study of device performance in a given circuit. These combined simulators are tested against experimental data and an equivalent circuit model harmonic-balance approach, and yield superior accuracy with respect to the experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call