Abstract

We numerically study the computed tomography dose index (CTDI) quantity based on the Monte Carlo method using GATE software. In this work, it was demonstrated that the CTDI values decreased following an exponential form as a function of phantom diameter. As expected, the absorbed dose is shown to have a good relationship which increases linearly with X-ray tube current (mAs) values. The simulation presented in particularly that the (CTDI) dose increases not-linearly dependence with photon deposited energy (kVp). It seems that the average percent of the absorbed dose in the abdominal phantom was lower than the heat phantom object's absorbed dose, which was equal to 80%. In conclusion, the use of Monte Carlo simulation represents a dosimetry tool for radiation protection in the field of radiology imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.