Abstract

While self-attention has been successfully applied in a variety of natural language processing and computer vision tasks, its application in Monte Carlo (MC) image denoising has not yet been well explored. This paper presents a self-attention based MC denoising deep learning network based on the fact that self-attention is essentially non-local means filtering in the embedding space which makes it inherently very suitable for the denoising task. Particularly, we modify the standard self-attention mechanism to an auxiliary feature guided self-attention that considers the by-products (e.g., auxiliary feature buffers) of the MC rendering process. As a critical prerequisite to fully exploit the performance of self-attention, we design a multi-scale feature extraction stage, which provides a rich set of raw features for the later self-attention module. As self-attention poses a high computational complexity, we describe several ways that accelerate it. Ablation experiments validate the necessity and effectiveness of the above design choices. Comparison experiments show that the proposed self-attention based MC denoising method outperforms the current state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.