Abstract

AbstractSummary: The properties of a single semiflexible mushroom chain at a plane surface with a long‐ranged attracting potential are studied by means of lattice Monte Carlo computer simulation using the bond fluctuation model, configurational bias algorithm for chain re‐growing and the Wang‐Landau sampling technique. We present the diagram of states in variables temperature T vs. strength of the adsorption potential, εw, for a quite short semiflexible chain consisting of N = 64 monomer units. The diagram of states consists of the regions of a coil, liquid globule, solid isotropic globule, adsorbed coil and cylinder‐like liquid‐crystalline globule. At low values of the adsorption strength εw the coil–globule and the subsequent liquid–solid globule transitions are observed upon decreasing temperature below the adsorption transition point. At high values of εw these two transitions change into a single transition from an adsorbed coil to a cylinder‐like liquid‐crystalline solid globule. We conclude that for a semiflexible chain the presence of a plane attracting surface favors the formation of a globule with internal liquid‐crystalline ordering of bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.