Abstract

Recent challenges in monitoring subsurface geological repositories intended for disposal of radioactive materials such as spent nuclear fuel call for new, innovative concepts that are facility independent, cost-effective, passive, and reliable. Once nuclear material is in place at these facilities, reverifying the inventory may no longer be feasible if continuity of knowledge is lost or unavailable to the inspectors. Using cosmic ray muons may present several potential advantages over conventional photon/neutron signatures, and their use in safeguards applications have only received attention in the past decade. However, there have been limited efforts to explore the integration of cosmic ray muons into repository safeguards and study potential gains, risks, and costs. This paper presents a Monte Carlo-based methodology to characterize the cosmic ray muon flux, including muon angular and energy differential distributions at depths representative of subsurface geological repositories. Since there have been limited measurements at these sites and a measurement made in one site is not always transferable to another site, the objective is to develop an efficient simulation method and useful parametrizations to provide a convenient tool for enabling muon simulations at any geological repository site. It is expected these results will provide a better understanding of how muons can be integrated into an existing geological repository safeguards framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.