Abstract

In this work, we have calculated the two-dimensional dose distribution in water for a 32P intravascular brachytherapy source wire using the EGSnrc Monte Carlo code. The beta source (Guidant Vascular Intervention) has a radioactive core with a length of 27 mm and a diameter of 0.24 mm. The dose parameters required by the AAPM TG-60 formalism are discussed and calculated. Dose rate evaluated at the reference point is 0.1311+/-0.0001 Gy min(-1) mCi(-1). For the beta source studied, the dose distribution is uniform along the axial direction z for a given radial position p for - 10 mm< or =z< or =10 mm and p< or =7 mm. In such a dose-uniformity region, the dose field can be characterized by one-dimensional dose distribution, D(p), the dose distribution on the transverse axis. Beyond this region a two-dimensional (2D) description is necessary. However, for the long beta source wire the anisotropy function proposed by the TG-60 formalism becomes indefinable when the radial distance exceeds penetration depth of beta electrons. We have proposed that the anisotropy function be expressed in the cylindrical coordinate system, instead of a polar system, to remedy this deficiency. For practical purposes, the entire 2D dose distribution and the dose parameters calculated in the work are tabulated for ease of use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.