Abstract

Rate coefficients are calculated for the reactions of H and D-atoms with vibrationally excited HF and DF molecules. Three-dimensional classical trajectories of the collision dynamics of these reactions have been calculated by means of the London-Eyring-Polanyi-Sato (LEPS) potential energy surface. The Monte Carlo procedure is used to start each collision trajectory. Results of this study indicate that (a) chemical exchange provides an efficient mechanism for relaxing vibrationally excited HF and DF molecules by H and D-atoms; (b) multiple-quantum transitions are important in the deactivation processes; and (c) both vibration-translation and vibration-rotation energy transfers contribute to vibrational relaxation of vibrationally excited HF and DF molecules by H and D-atoms. The vibrational relaxation of HF (v = 1) by H-atoms is faster than the vibrational relaxation of DF (v = 1) by H-atoms. A similar effect is indicated for D-atoms; i.e. the vibrational relaxation of DF (v = 1) by D-atoms is faster than ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call