Abstract

Given the substantial literature on the use of Monte Carlo (MC) simulations to verify treatment planning system (TPS) calculations of radiotherapy dose in heterogeneous regions, such as head and neck and lung, this study investigated the potential value of running MC simulations of radiotherapy treatments of nominally homogeneous pelvic anatomy. A pre-existing in-house MC job submission and analysis system, built around BEAMnrc and DOSXYZnrc, was used to evaluate the dosimetric accuracy of a sample of 12 pelvic volumetric arc therapy (VMAT) treatments, planned using the Varian Eclipse TPS, where dose was calculated with both the Analytical Anisotropic Algorithm (AAA) and the Acuros (AXB) algorithm. In-house TADA (Treatment And Dose Assessor) software was used to evaluate treatment plan complexity, in terms of the small aperture score (SAS), modulation index (MI) and a novel exposed leaf score (ELS/ELA). Results showed that the TPS generally achieved closer agreement with the MC dose distribution when treatments were planned for smaller (single-organ) targets rather than larger targets that included nodes or metastases. Analysis of these MC results with reference to the complexity metrics indicated that while AXB was useful for reducing dosimetric uncertainties associated with density heterogeneity, the residual TPS dose calculation uncertainties resulted from treatment plan complexity and TPS model simplicity. The results of this study demonstrate the value of using MC methods to recalculate and check the dose calculations provided by commercial radiotherapy TPSs, even when the treated anatomy is assumed to be comparatively homogeneous, such as in the pelvic region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.