Abstract

Objective:The goal of the present study was to calculate the continuous slowing down approximation (CDSA) ranges and derive mass stopping power for EBT3 and EBT-XD films for therapeutic protons energy ranges of 50–400 MeV.Methods:The MCNPX and TRansport of Ions in Matter (TRIM) Monte Carlo codes were used in this study. Utilizing the published International Commission on Radiation Units and Measurement 49 data for the water mass stopping power and CSDA ranges, the mass stopping powers of EBT3 and EBT-XD films were derived using the approximation proposed by Newhauser and Zhang in 2009.Results:The calculated CSDA ranges by MCNPX and TRIM in water were first benchmarked to International Commission on Radiation Units and Measurement 49 published data for water, and found to be within 1% with a 1.4-mm maximum difference. The calculated CSDA values in EBT3 film, compared with the measured CSDA ranges in the EBT3 film, were within 2% of the calculated values with a 3-mm maximum difference. The MCNPX and TRIM results for CSDA ranges agreed with each other to within 2.7% for EBT3 film and 4.4% for EBT-XD film. The overall uncertainties of the MCNPX and TRIM-derived CSDA ranges were 3% and 1.3%, respectively.Conclusion:The mass stopping powers for Gafchromic EBT3 and EBT-XD films were derived.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call