Abstract

Monte Carlo calculations of the rate of absorbed energy from a photon beam were carried out to compare the response of commercial plastic scintillators with that of air in the energy region below 1 MeV. We have found that for photon energies above 100 keV, the response of different kinds of plastics is proportional to that of air, while below this value of energy, we have obtained differences between the responses of plastics and air. In a literature search, we have also found discrepancies with other authors as well as among them. In this paper, we investigate the possibilities of eliminating these differences and explaining discrepancies. We found that doping a plastic scintillator with silicon makes the composite material behave like air from 2 keV up to 600 keV, making the ratio of absorbed energy constant. This energy region is of interest in radiology and surface radiotherapy and we conclude that a plastic scintillator with truly air-equivalent behavior is of importance to carry out more precise dosimetry. Other elements such as fluorine and magnesium were also considered, but silicon was found to be more appropriate due to its greater atomic number and its interchangeability with carbon in hydrocarbon molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call