Abstract

Localisation of axial peaks is essential for height determination in confocal microscopy. Several algorithms have been proposed for reliable height extraction in surface topography measurements. However, most of these algorithms use nonlinear processing, which precludes estimating the peak height uncertainty. A Monte Carlo based standard uncertainty analysis model is developed here to evaluate the precision of height extraction algorithms. The key parameters of this model are the vertical sampling deviation and the size of the scanning pitch. Height extraction uncertainty of the centroid algorithm and nonlinear fitting algorithms were calculated using simulations. Our results offer a reference for selecting algorithms for confocal metrology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.