Abstract

Astatine-211 (At-211) is a promising alpha particle emitter for targeted radionuclide therapy. Since its daughter isotope (polonium-211(Po-211)) emits characteristic X-rays of about 80 keV, the distribution of At-211 in the body can be imaged by detecting the X-rays with a scintillation camera. However, the isotopes also emit high-energy gamma photons that are collimated with difficulty for a parallel-hole collimator of a clinical scintillation camera system, and thus the selection of a collimator is important. In this study, we compared the performances of low-energy high-resolution (LEHR), low-energy all-purpose (LEAP), medium-energy (ME), and high-energy (HE) parallel-hole collimators for At-211 using Monte Carlo simulation. We simulated a clinical scintillation camera system with the collimators using the Geant4 toolkit. The energy spectra, sensitivities, and spatial resolutions for the point source of At-211 were evaluated. Moreover, we simulated imaging of six sphere sources of At-211 in a 1-cm-thick cylindrical phantom filled with At-211 solution to evaluate image contrast. All of the results in this study are simulation data. The spatial resolution with LEHR was 7.6 mm full width at half maximum (FWHM) and the highest between collimators, while the sensitivity with LEAP was 85 cps/MBq and the highest. The image contrast acquired with the ME collimator was superior to those with the other collimators. We concluded that the LEHR, LEAP, and ME collimators had their advantages, so an optimum collimator should be selected depending on the purpose of imaging of At-211, although there was no advantage in using the HE collimator for the imaging of At-211.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.