Abstract
Scatter correction is a prerequisite for quantitative SPECT, but potentially increases noise. Monte Carlo simulations (EGS4) and physical phantom measurements were used to compare accuracy and noise properties of two scatter correction techniques: the triple-energy window (TEW), and the transmission dependent convolution subtraction (TDCS) techniques. Two scatter functions were investigated for TDCS: (i) the originally proposed mono-exponential function and (ii) an exponential plus Gaussian scatter function demonstrated to be superior from our Monte Carlo simulations. Signal to noise ratio (S/N) and accuracy were investigated in cylindrical phantoms and a chest phantom. Results from each method were compared to the true primary counts (simulations), or known activity concentrations (phantom studies). was used in all cases. The optimized method overall performed best, with an accuracy of better than 4% for all simulations and physical phantom studies. Maximum errors for TEW and of -30 and -22%, respectively, were observed in the heart chamber of the simulated chest phantom. TEW had the worst S/N ratio of the three techniques. The S/N ratios of the two TDCS methods were similar and only slightly lower than those of simulated true primary data. Thus, accurate quantitation can be obtained with , with a relatively small reduction in S/N ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.