Abstract

Electrical machines with stranded random windings often suffer from considerable circulating current losses. These losses have been poorly studied because of the difficulty and computational cost of modeling stranded windings, and the stochastic nature of the problem due to the uncertain positions of the strands. This paper proposes two methods to model random stranded windings of arbitrary complexity. First, a circuit model considering the entire main flux path is presented, and some practical implementation considerations are discussed. Second, a computationally efficient finite-element approach based on non-conforming meshing is presented. Finally, a method is proposed to model the random packing process of strands within a slot, without any remeshing or inductance recalculation required. The proposed methods are then compared with special no-rotor measurement data of a large number of high-speed induction machines, and good agreement is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.