Abstract

A simulated colour control mechanism for a multi-coloured LED lighting system is presented. The system achieves adjustable and stable white light output and allows for system-to-system reproducibility after application of the control mechanism. The control unit works using a pre-calibrated lookup table for an experimentally realized system, with a calibrated tristimulus colour sensor. A Monte Carlo simulation is used to examine the system performance concerning the variation of luminous flux and chromaticity of the light output. The inputs to the Monte Carlo simulation are variations of the LED peak wavelength, the LED rated luminous flux bin, the influence of the operating conditions, ambient temperature, driving current and the spectral response of the colour sensor. The system performance is investigated by evaluating the outputs from the Monte Carlo simulation. The outputs show that the applied control system yields an uncertainty on the luminous flux of 2.5% within a 95% coverage interval which is a significant reduction from the 8% of the uncontrolled system. A corresponding uncertainty reduction in Δu ′v ′ is achieved from an average of 0.0193 to 0.00125 within 95% coverage range after using the control system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.