Abstract
We propose stochastic bilateral filter (SBF) and stochastic non-local means (SNLM), efficient randomized processes that agree with conventional bilateral filter (BF) and non-local means (NLM) on average, respectively. By Monte-Carlo, we repeat this process a few times with different random instantiations so that they can be averaged to attain the correct BF/NLM output. The computational bottleneck of the SBF and SNLM are constant with respect to the window size and the color dimension of the edge image, meaning the execution times for color and hyperspectral images are nearly the same as for the grayscale images. In addition, for SNLM, the complexity is constant with respect to the block size. The proposed stochastic filter implementations are considerably faster than the conventional and existing "fast" implementations for high dimensional image data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.