Abstract

Magnetospheres of neutron stars can be perturbed by star quakes, interaction in a binary system, or sudden collapse of the star. The perturbations are typically in the kilohertz band and excite magnetohydrodynamic waves. We show that compressive magnetospheric waves steepen into monster shocks, possibly the strongest shocks in the Universe. The shocks are radiative, i.e., the plasma energy is radiated before it crosses the shock. As the kilohertz wave with the radiative shock expands through the magnetosphere, it produces a bright X-ray burst. Then, it launches an approximately adiabatic blast wave, which will expand far from the neutron star. These results suggest a new mechanism for X-ray bursts from magnetars and support the connection of magnetar X-ray activity with fast radio bursts. Similar shocks may occur in magnetized neutron-star binaries before they merge, generating an X-ray precursor of the merger. Powerful radiative shocks are also predicted in the magnetosphere of a neutron star when it collapses into a black hole, producing a bright X-ray transient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.