Abstract

The aim of this study was to compare the light transmission of monowave and polywave-curing devices by a bulk-fill composite containing only camphorquinone as a photoinitiator. Three light-curing devices were used to cure bulk-fill composite QuiXfil: one monowave (Translux® Wave) and two polywave (VALO Cordless and Bluephase® PowerCure. The NIST-calibrated spectrometer (MARC Resin Calibrator, BlueLight Analytics Inc.) was used to measure the incident and transmitted light through a 2-mm composite specimen over 20 s. Light transmittance was calculated from the ratio of the amount of transmitted and incident light. For data analysis (ANOVA, α = 0.05), total irradiation of the entire spectrum, irradiation with wavelengths of 360-420 nm for the violet spectrum, and 420-540 nm for the blue spectrum were selected. Monowave curing unit Translux® Wave had the lowest light transmission (13.78 ± 0.5%), similar to the violet light transmission of polywave devices (12.02 ± 0.94% and 13.81 ± 1.72% for Valo Cordless and Bluephase PowerCure, respectively). Blue light transmittance (32.15-23.70%) was more than twofold higher than for the wavelengths in the violet region of the spectrum (13.81-12.02%) for the two polywave devices. VALO Cordless showed the highest total and blue light transmission (p<0.001). There was no significant difference in the transmission of the violet part of the spectrum between VALO Cordless and Bluephase® PowerCure (p = 0.465). Within the limitations of this study, we could conclude that polywave curing devices can be used for the polymerization of the bulk-fill composite with camphorquinone as the sole photoinitiator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call