Abstract

KRAS, a 21 kDa guanine nucleotide-binding protein that functions as a molecular switch, plays a key role in regulating cellular growth. Dysregulation of this key signaling node leads to uncontrolled cell growth, a hallmark of cancer cells. KRAS undergoes post-translational modification by monoubiquitination at various locations, including at lysine104 (K104) and lysine147 (K147). Previous studies have suggested that K104 stabilizes helix-2/helix-3 interactions and K147 is involved in nucleotide binding. However, the impact of monoubiquitination at these residues on the overall structure, dynamics, or function of KRAS is not fully understood. In this study, we examined KRAS monoubiquitination at these sites using data from extensive (12 μs aggregate time) molecular dynamics simulations complemented by nuclear magnetic resonance spectroscopy data. We found that ubiquitin forms dynamic nonspecific interactions with various regions of KRAS and that ubiquitination at both sites modulates conformational fluctuations. In both cases, ubiquitin samples a broad range of conformational space and does not form long-lasting noncovalent contacts with KRAS but it adopts several preferred orientations relative to KRAS. To examine the functional impact of these preferred orientations, we performed a systematic comparison of the dominant configurations of the ubiquitin/KRAS simulated complex with experimental structures of KRAS bound to regulatory and effector proteins as well as a model membrane. Results from these analyses suggest that conformational selection and population shift may minimize the deleterious effects of KRAS ubiquitination at K104 and K147 on binding to some but not all interaction partners. Our findings thus provide new insights into the steric effects of ubiquitin and suggest a potential avenue for therapeutic targeting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.