Abstract
Steffensen's method is slightly generalized by introducing a real parameter. In this way one can get different monotonicity properties, depending on the choice of this parameter. These monotonicity statements give the possibility of bracketing the solution of a given problem. In a special case they even ensure the convergence and the existence of a solution. Furthermore there are given sufficient conditions, which show that Steffensen's method converges at least as quickly as Newton's method. A numerical example shows the efficiency of the theorems and compares Steffensen's and Newton's method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.