Abstract

We prove that the cd-index of a convex polytope satisfies a strong monotonicity property with respect to the cd-indices of any face and its link. As a consequence, we prove for d-dimensional polytopes a conjecture of Stanley that the cd-index is minimized on the d-dimensional simplex. Moreover, we prove the upper bound theorem for the cd-index, namely that the cd-index of any d-dimensional polytope with n vertices is at most that of C(n,d), the d-dimensional cyclic polytope with n vertices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.