Abstract
We establish monotonicity inequalities for the r-area of a complete oriented properly immersed r-minimal hypersurface in Euclidean space under appropriate quasi-positivity assumptions on certain invariants of the immersion. The proofs are based on the corresponding first variational formula. As an application, we derive a degeneracy theorem for an entire r-minimal graph whose defining function ƒ has first and second derivatives decaying fast enough at infinity: Its Hessian operator D2 ƒ has at least n − r null eigenvalues everywhere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.