Abstract

In this paper, we prove that for $$a\ge 31/98$$, the function $$\begin{aligned} f_{a}\left( x\right) =\ln \Gamma \left( x+\frac{1}{2}\right) -x\ln x+x-\frac{ 1}{2}\ln \left( 2\pi \right) +\dfrac{x}{24}\dfrac{x^{2}+a-7/120}{ x^{4}+ax^{2}+\left( 98a-31\right) /1680} \end{aligned}$$is strictly increasing (decreasing) and concave (convex) on $$\left( 0,\infty \right) $$ if and only if $$a\ge 5281/6068$$ ($$a=31/98$$). Moreover, we show that the necessary and sufficient condition for function $$\begin{aligned} F_{a}\left( x\right) =-\left( x^{4}+ax^{2}+\frac{98a-31}{1680}\right) f_{a}\left( x\right) \end{aligned}$$for $$a\in \mathbb {R}$$ to be completely monotonic on $$\left( 0,\infty \right) $$ is also $$a\ge 5281/6068$$. These yield some new sharp bounds for the gamma function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call