Abstract
Let $\Omega_n$ stand for the volume of the unit ball in $\mathbb{R}^n$ for $n\in\mathbb{N}$. In the present paper, we prove that the sequence $\Omega_{n}^{1/(n\ln n)}$ is logarithmically convex and that the sequence $\frac{\Omega_{n}^{1/(n\ln n)}}{\Omega_{n+1}^{1/[(n+1)\ln(n+1)]}}$ is strictly decreasing for $n\ge2$. In addition, some monotonic and concave properties of several functions relating to $\Omega_{n}$ are extended and generalized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.