Abstract

This paper intended to investigate spatio-temporal monotonic trend and shift in concentration of monsoon precipitation across West Bengal, India, by analysing the time series of monthly precipitation from 18 weather stations during the period from 1901 to 2002. In dealing with, the inhomogeneity in the precipitation series, RHtestsV4 software package is used to detect, and adjust for, multiple change points (shifts) that could exist in data series. Finally, the cumulative deviation test was applied at 5% significant level to check the homogeneity (presence of historic changes by cumulative deviations test). Afterward, non-parametric Mann-Kendall (MK) test and Theil-Sen estimator (TSE) was applied to detect of nature and slope of trends; and, Sequential Mann Kendall (SQMK) test was applied for detection of turning point and magnitude of change in trends. Prior to the application of statistical tests, the pre-whitening technique was used to eliminate the effect of autocorrelation in precipitation data series. Four indices- precipitation concentration index (PCI), precipitation concentration degree (PCD), precipitation concentration period (PCP) and fulcrum (centre of gravity) were used to detect precipitation concentration and the spatial pattern in it. The application of the above-mentioned procedures has shown very notable statewide monotonic trend for monsoon precipitation time series. Regional cluster analysis by SQMK found increasing precipitation in mountain and coastal regions in general, except during the non- monsoon seasons. The results show that higher PCI values were mainly observed in South Bengal, whereas lower PCI values were mostly detected in North Bengal. The PCI values are noticeably larger in places where both monsoon total precipitation and span of rainy season are lower. The results of PCP reveal that precipitation in Gangetic Bengal mostly occurs in summer (monsoon season), and the rainy season arrives earlier in North Bengal than South Bengal, whereas the results of PCD also indicate that the precipitation in North Bengal was more dispersed within a year than that in South Bengal. The concentration characteristic of precipitation could be detected by fulcrum analysis, and significant concentration over most of West Bengal was obvious within July month band. Precipitation trend observed in West Bengal is compared with that in Central India (CI) region and comparison of precipitation departure with Indian monsoon and Gangetic Bengal can be explained by forecasting ensemble.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call