Abstract
A new characterization of monotonic dependence is given here proceeding in a natural way from the consideration of a type of dependence weaker than quadrant dependence. More precisely, each bivariate distribution of $(X, Y)$ is transformed onto a pair of functions $^\mu{X, Y}$ and $^\mu{Y, X}$ defined on the interval $0 < p < 1$ and taking values from [-1, 1], with $^\mu{X, Y}(p)$ being a suitably normalized expected value of $X$ under the condition that $Y$ exceeds its $p$th quantile. The usefulness of these functions as a kind of measures of the strength of monotonic dependence as well as their close relation to regression functions is demonstrated. It is also suggested that these functions and their sample analogues could serve as useful tools in modelling and solving some statistical decision problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.