Abstract

Shear connectors are essential elements in the design of steel-concrete composite systems. These connectors are utilized to prevent the occurrence of potential slips at the interface of steel and concrete. The two types of shear connectors which have been recently employed in construction projects are C- and L-shaped connectors. In the current study, the behavior of C and L-shaped angle shear connectors is investigated experimentally. For this purpose, eight push-out tests were composed and subjected to monotonic loading. The load-slip curves and failure modes have been determined. Also, the shear strength of the connectors has been compared with previously developed relationships. Two failure modes of shear connectors were observed: 1) concrete crushing–splitting and 2) shear connector fracture. It was found that the L-shaped connectors have less shear strength compared to C-shaped connectors, and decreasing the angle leg size increases the shear strength of the C-shaped connectors, but decreases the relative ductility and strength of L-shaped connectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.