Abstract

The retrofit of reinforced concrete columns with FRP jackets has received considerable attention in recent years. The advantages of this technique compared to other similar techniques include the high strength-weight and stiffness-weight ratios of FRP (Fibre Reinforced Plastics), the strength and ductility increase of RC columns confined with FRP jackets as well as the fact that FRP external shells prevent or mitigate environmental degradation of the concrete and consequent corrosion of the steel reinforcement. Furthermore, this method also reduces the column transversal deformation and prevents the buckling of longitudinal reinforcement. Twenty five experimental tests were carried out on reinforced concrete columns confined with CFRP composites, and subjected to axial monotonic compression. In order to evaluate the influence of several parameters on the mechanical behavior of the columns, the height of the columns was maintained, while changing other parameters: the diameter of the columns, the type of material (plain or reinforced concrete), the steel hoop spacing of the RC columns and the number of CFRP layers. Predictive equations, based on the experimental analysis, are proposed to estimate the compressive strength of the confined concrete, the maximum axial load and the axial or the lateral failure strain of circular RC columns jacketed with CFRP. A stress–strain model for CFRP confined concrete in compression, which considers the effect of the CFRP and the transversal reinforcement on the confined compressive strength of the column is also proposed. The curves, axial load versus axial or lateral strain of the RC column, are simulated based on the stress–strain model and include the longitudinal reinforcement effect. The results demonstrate that the model and the predictive equations represent very well the axial compression behavior of RC circular columns confined with CFRP. The applicability of this model to a large spectrum of RC column dimensions is its main advantage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.