Abstract

In certain field conditions such as offshore projects under wave loads or embankments under traffic loads, both the vertical and horizontal stresses are variable. However, previous investigations rarely considered the variation in horizontal stress. To better understand the characteristics of natural saturated soft clay, a series of monotonic and cyclic triaxial tests with a K0-consolidation state were carried out under a variable confining pressure (VCP) stress path. The development of axial strain, pore water pressure and effective stress path is analysed. The results show that with the increase in η (the ratio of the variation in the mean effective principal stress to that of the deviatoric stress), the undrained shear strength (qf) decreases continuously. The pore water pressure generation is slightly improved under a stress path with increasing confining pressure. Based on the test results, a unified formula was established to predict the pore water pressure under VCP stress paths. The unique p–q–e relationship of normally consolidated clay in monotonic VCP triaxial tests was also demonstrated. Under VCP stress paths, the amplitude of the pore pressure increases, and the effective stress path tilts more sharply to the right. Moreover, a unified formula was established that can provide a good reference for predicting effective stress paths under cyclic VCP triaxial tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call