Abstract
According to Mack a space is countably paracompact if and only if its product with [ 0 , 1 ] is δ-normal, i.e. any two disjoint closed sets, one of which is a regular G δ -set, can be separated. In studying monotone versions of countable paracompactness, one is naturally led to consider various monotone versions of δ-normality. Such properties are the subject of this paper. We look at how these properties relate to each other and prove a number of results about them, in particular, we provide a factorization of monotone normality in terms of monotone δ-normality and a weak property that holds in monotonically normal spaces and in first countable Tychonoff spaces. We also discuss the productivity of these properties with a compact metrizable space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.