Abstract

This paper describes a polynomially-solvable class of temporal planning problems. Polynomiality follows from two assumptions. Firstly, by supposing that each sub-goal fluent can be established by at most one action, we can quickly determine which actions are necessary in any plan. Secondly, the monotonicity of sub-goal fluents allows us to express planning as an instance of STP≠ (Simple Temporal Problem with difference constraints). This class includes temporally-expressive problems requiring the concurrent execution of actions, with potential applications in the chemical, pharmaceutical and construction industries. We also show that any (temporal) planning problem has a monotone relaxation which can lead to the polynomial-time detection of its unsolvability in certain cases. Indeed we show that our relaxation is orthogonal to relaxations based on the ignore-deletes approach used in classical planning since it preserves deletes and can also exploit temporal information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.