Abstract

For a fixed irrational number \(\alpha\) and \(n\in \mathbb{N}\), we look at the shape of the sequence \((f(1),\ldots,f(n))\) after Schensted insertion, where \(f(i) = \alpha i \mod 1\). Our primary result is that the boundary of the Schensted shape is approximated by a piecewise linear function with at most two slopes. This piecewise linear function is explicitly described in terms of the continued fraction expansion for \(\alpha\). Our results generalize those of Boyd and Steele, who studied longest monotone subsequences. Our proofs are based on a careful analysis of monotone sets in two-dimensional lattices.Mathematics Subject Classifications: 05A05, 11H06, 11B57, 11K06Keywords: Longest increasing subsequence, Schensted shape, geometry of numbers, S<metaTags></metaTags>#x27;os permutations

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.