Abstract

Monotone sets have been introduced about ten years ago by Cheeger and Kleiner who reduced the proof of the non biLipschitz embeddability of the Heisenberg group into L1 to the classification of its monotone subsets. Later on, monotone sets played an important role in several works related to geometric measure theory issues in the Heisenberg setting. In this paper, we work in an arbitrary Carnot group and show that its monotone subsets are sets with locally finite perimeter that are local minimizers for the perimeter. Under an additional condition on the ambient Carnot group, we prove that their measure-theoretic interior and support are precisely monotone. We also prove topological and measure-theoretic properties of local minimizers for the perimeter whose interest is independent from the study of monotone sets. As a combination of our results, we get in particular a sufficient condition under which any monotone set admits measure-theoretic representatives that are precisely monotone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.