Abstract

The article is devoted to investigation of the classes of functions belonging to the gaps between classes $P_{n+1}(I)$ and $P_{n}(I)$ of matrix monotone functions for full matrix algebras of successive dimensions. In this paper we address the problem of characterizing polynomials belonging to the gaps $P_{n}(I) \setminus P_{n+1}(I)$ for bounded intervals $I$. We show that solution of this problem is closely linked to solution of truncated moment problems, Hankel matrices and Hankel extensions. Namely, we show that using the solutions to truncated moment problems we can construct continuum many polynomials in the gaps. We also provide via several examples some first insights into the further problem of description of polynomials in the gaps that are not coming from the truncated moment problem. Also, in this article, we deepen further in another way into the structure of the classes of matrix monotone functions and of the gaps between them by considering the problem of position in the gaps of certain interesting subclasses of matrix monotone functions that appeared in connection to interpolation of spaces and in a proof of the Löwner theorem on integral representation of operator monotone functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.