Abstract

Maximal monotonicity is explored as a generalization of the linear theory of passivity, aiming at an algorithmic input/output analysis of physical models. The theory is developed for maximal monotone one-port circuits, formed by the series and parallel interconnection of basic elements. These circuits generalize passive LTI transfer functions. Periodic input signals are shown to be mapped to periodic output signals, and these input-output behaviors can be efficiently computed using a maximal monotone splitting algorithm, which decomposes the computation according to the circuit topology. A new splitting algorithm is presented, which applies to any monotone one-port circuit defined as a port interconnection of monotone elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.