Abstract

Nonconforming domain decomposition techniques provide a powerful tool for the numerical approximation of partial differential equations. We use a generalized mortar method based on dual Lagrange multipliers for the discretization of a nonlinear contact problem between linear elastic bodies. In the case of unilateral contact problems, pointwise constraints occur and monotone multigrid methods yield efficient iterative solvers. Here, we generalize these techniques to nonmatching triangulations, where the constraints are realized in terms of weak integral conditions. The basic new idea is the construction of a nested sequence of nonconforming constrained spaces. We use suitable basis transformations and a multiplicative correction. In contrast to other approaches, no outer iteration scheme is required. The resulting monotone method is of optimal complexity and can be implemented as a multigrid method. Numerical results illustrate the performance of our approach in two and three dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.