Abstract

In this paper, we consider the existence and iterative approximation of solutions for a class of nonlinear fourth-order integro-differential equations (IDEs) with Navier boundary conditions. We first prove the existence and uniqueness of analytical solutions for a linear fourth-order IDE, which has rich applications in engineering and physics, and then we establish a maximum principle for the corresponding operator. Based upon the maximum principle, we develop a monotone iterative technique in the presence of lower and upper solutions to obtain iterative solutions for the nonlocal nonlinear problem under certain conditions. Some examples are presented to illustrate the main results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.