Abstract
A monotone homotopy is a homotopy composed of simple closed curves which are also pairwise disjoint. In this paper, we prove a “gluing” theorem for monotone homotopies; we show that two monotone homotopies which have appropriate overlap can be replaced by a single monotone homotopy. The ideas used to prove this theorem are used in [G. R. Chambers and Y. Liokumovich, Existence of minimal hypersurfaces in complete manifolds of finite volume, arXiv:1609.04058] to prove an analogous result for cycles, which forms a critical step in their proof of the existence of minimal surfaces in complete non-compact manifolds of finite volume. We also show that, if monotone homotopies exist, then fixed point contractions through short curves exist. In particular, suppose that [Formula: see text] is a simple closed curve of a Riemannian surface, and that there exists a monotone contraction which covers a disc which [Formula: see text] bounds consisting of curves of length [Formula: see text]. If [Formula: see text] and [Formula: see text], then there exists a homotopy that contracts [Formula: see text] to [Formula: see text] over loops that are based at [Formula: see text] and have length bounded by [Formula: see text], where [Formula: see text] is the diameter of the surface. If the surface is a disc, and if [Formula: see text] is the boundary of this disc, then this bound can be improved to [Formula: see text].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.