Abstract

Wrist position is known to affect the grip strength. We focused on the spinal reflex arc, which would support the movement, and investigated the effects of low-threshold afferents from the extensor carpi radialis (ECR) on the excitability of the flexor digitorum superficialis (FDS) motoneurons using the post-stimulus time-histogram (PSTH) and electromyogram-averaging (EMG-A) methods. Electrical conditioning stimulation of an intensity below the motor threshold was applied to the radial nerve branch innervating the ECR. In the PSTH study, changes in the firing probability of single motor units after electrical conditioning stimulation were investigated in seven subjects. An early and significant peak (increase in the firing probability: facilitation) was recorded for 36/60 FDS motor units. The remaining 24 motor units did not show any effects. Weak mechanical conditioning stimulation of the ECR muscle belly induced a similar peak. The central latency of the facilitation was equivalent to that of the homonymous monosynaptic facilitation. In the EMG-A study, changes in the rectified and averaged electromyograms of FDS induced by conditioning stimulation were examined in 12 subjects. An early and significant peak (facilitation) was induced by both electrical and mechanical conditioning stimulations. The facilitation decreased after withdrawal of the vibration to the ECR muscle belly. The facilitation was never induced by cutaneous nerve stimulation in the PSTH and EMG-A studies. These findings suggest that Group Ia afferents from the ECR increase the excitability of FDS motoneurons through a monosynaptic path in the spinal cord. These reflex arcs likely facilitate hand grasping movements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.