Abstract

Layer 5 (L5) of somatosensory cortex is a major gateway for projections to intra- and subcortical brain regions. This layer is further divided into 5A and 5B characterized by relatively separate afferent and efferent connections. Little is known about the organization of connections within L5A of neocortical columns. We therefore used paired recordings to probe the anatomy and physiology of monosynaptic connections between L5A pyramidal neurons within the barrel columns of somatosensory cortex in acute slices of approximately 3-week-old rats. Post hoc reconstruction and calculation of the axodendritic overlap of pre- and postsynaptic neurons, together with identification of putative synaptic contacts (3.5 per connection), indicated a preferred innervation domain in the proximal dendritic region. Synaptic transmission was reliable (failure rate <2%) and had a low variability (coefficient of variation of 0.3). Unitary excitatory postsynaptic potential (EPSP) amplitudes varied 30-fold with a mean of 1.2 mV and displayed depression over a wide range of frequencies (2-100 Hz) during bursts of presynaptic firing. A single L5A pyramidal neuron was estimated to target approximately 270 other pyramidal neurons within the same layer of its home barrel column, suggesting a mechanism of feed-forward excitation by which synchronized single action potentials are efficiently transmitted within L5A of juvenile cortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.