Abstract

Due to their intrinsic high reactivity, isolation of heavier analogues of carbynes remains a great challenge. Here, we report the synthesis and characterization of a neutral monosubstituted Sn(I) radical (2) supported by a sterically hindered hydrindacene ligand, which represents the first tin analogue of a free carbyne. Different from all Sn(I/III) species reported thus far, the presence of a sole Sn-C σ bond in 2 renders the remaining two Sn 5p orbitals energetically almost degenerate, of which one is singly occupied and the other is empty. Consequently, its S = 1/2 ground state possesses two-fold orbital pseudo-degeneracy and substantial unquenched orbital angular momentum, as evidenced by one component of its g matrix (1.957, 1.896, and 1.578) being considerably less than 2. Consistent with this unique electronic structure, 2 can bind to an N-heterocyclic carbene to afford a neutral two-coordinate Sn(I) radical and initiate a one-electron transfer to benzophenone to furnish a Sn(II)-ketyl radical anion adduct. As a manifestation of its Sn-centered radical nature, 2 reacts with diphenyl diselenide and p-benzoquinone to form Sn-S and Sn-O bonds, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.