Abstract

Since the unsaturating activation function is unbounded, more complex dynamics may exist in neural networks with this kind of activation function. In this article, monostability and multistability results of almost-periodic solutions are developed for fractional-order neural networks with unsaturating piecewise linear activation functions. Some globally Mittag-Leffler attractive sets are given, and the existence of globally Mittag-Leffler stable almost-periodic solution is demonstrated by using Ascoli-Arzela theorem. In particular, some sufficient conditions are provided to ascertain the multistability of almost-periodic solutions based on locally positively invariant set. It shows that there exists an almost-periodic solution in each positively invariant set, and all trajectories converge to this periodic trajectory in that rectangular area. Two illustrative examples are provided to demonstrate the effectiveness of the proposed sufficient criteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.