Abstract

Three Monosporascus eutypoides-like isolates recovered from cucurbit plants with symptoms of Monosporascus root rot and vine decline in Tunisia were compared to 28 isolates of M. cannonballus from 12 countries for phenotypic, genomic, and pathogenicity characteristics. Morphologically, M. cannonballus and M. eutypoides-like cultures were similar, each producing fertile perithecia in culture containing globose, smooth, dark brown to black ascospores. Nevertheless, all M. cannonballus isolates had one ascospore per ascus, while M. eutypoides-like isolates had mainly two to three ascospores per ascus (rarely one). The employment of the internal transcribed spacer (ITS) of nuclear ribosomal DNA, the elongation factor 1-α (EF-1α), and the β-tubulin (β-tub) gene sequence diversity analyses and the resulting phylogenies identified a level of polymorphism that enabled separation of M. cannonballus and M. eutypoides-like isolates. All isolates of M. cannonballus had identical EF-1α and β-tub sequences irrespective of very diverse geographic origins, which were different from the EF-1α and β-tub sequences of the M. eutypoides-like isolates (96 and 97% similarity, respectively). Similar results were obtained for the ITS region of rDNA. In addition, of three M. eutypoides-like isolates tested for pathogenicity, all three were pathogenic on watermelon, two were pathogenic on muskmelon, but only one was pathogenic on cucumber. The results demonstrate that the M. eutypoides-like isolates belong to the species M. eutypoides, and that M. cannonballus and M. eutypoides are distinct species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call