Abstract
Intra-articularly injected monosodium iodoacetate (MIA) induces joint pathology mimicking osteoarthritis (OA) and it is a widely used experimental model of OA. MIA induces acute inflammation, cartilage degradation and joint pain. Transient Receptor Potential Ankyrin 1 (TRPA1) is an ion channel known to mediate nociception and neurogenic inflammation. Here, we tested the hypothesis that TRPA1 would be involved in the development of MIA-induced acute inflammation, cartilage changes and joint pain. The effects of pharmacological blockade (by TCS 5861528) and genetic depletion of TRPA1 were studied in MIA-induced acute paw inflammation. Cartilage changes (histological scoring) and joint pain (weight-bearing test) in MIA-induced experimental OA were compared between wild type and TRPA1 deficient mice. The effects of MIA were also studied in primary human OA chondrocytes and in mouse cartilage. MIA evoked acute inflammation, degenerative cartilage changes and joint pain in wild type mice. Interestingly, these responses were attenuated in TRPA1 deficient animals. MIA-induced paw inflammation was associated with increased tissue levels of substance P; and the inflammatory edema was reduced by pretreatment with catalase, with the TRPA1 antagonist TCS 5861528 and with the neurokinin 1 receptor antagonist L703,606. In chondrocytes, MIA enhanced interleukin-1 induced cyclooxygenase-2 (COX-2) expression, an effect that was blunted by pharmacological inhibition and genetic depletion of TRPA1. TRPA1 was found to mediate acute inflammation and the development of degenerative cartilage changes and joint pain in MIA-induced experimental OA in the mouse. The results reveal TRPA1 as a potential mediator and drug target in OA.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.