Abstract

Sugars play an important role in the desiccation tolerance of most anhydrobiotic organisms and disaccharides have been extensively investigated for their ability to stabilize model membranes in the dry state. Much less is known about the ability of oligosaccharides to protect dry membranes. However, it has been shown that different structural families of oligosaccharides have different efficacies to interact with and protect membranes during drying. Here, we have compared three families of linear oligosaccharides (fructans, malto-oligosaccharides, manno-oligosaccharides) for their chain-length dependent lyoprotective effect on egg phosphatidylcholine liposomes. We found increased protection with chain length for the fructans, a moderate decrease in protection with chain length for malto-oligosaccharides, and a strong decrease for manno-oligosaccharides. Using Fourier-transform infrared spectroscopy and differential scanning calorimetry, we show that the degree of lyoprotection of the different sugars is closely related to their influence on the gel to liquid–crystalline phase behavior of the dry membranes and to the extent of H-bonding to different groups (C O, P O, choline) in the lipids. Possible structural characteristics of the different oligosaccharides that may determine the extent to which they are able to interact with and protect membranes are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.