Abstract

Backgroundω-3 polyunsaturated fatty acids (PUFAs) are synthesized from α-Linolenic acid (ALA, C18:3ω3) and play important roles in anti-inflammatory and antioxidant responses in mammal cells. ALA is an essential fatty acid which cannot be produced within the human body and must be acquired through diet. The purpose of this study was to evaluate the potential of a novel microalgal strain (HDMA-20) as a source of ω-3 PUFAs including ALA and eicosatetraenoic acid (ETA, C20:4ω3).MethodPhylogenetic Neighbor-Joining analysis based on 18S ribosomal DNA sequence was used to identify the microalga strain HDMA-20. Autotrophic condition was chosen to cultivate HDMA-20 to reduce the cultivation cost. GC-MS was used to determine the fatty acid composition of HDMA-20 lipid.ResultsA microalgal strain (HDMA-20) from Lake Chengfeng (Daqing, Heilongjiang province, China) was found to accumulate high content of ω-3 PUFAs (63.4% of total lipid), with ALA and eicosatetraenoic acid (ETA, C20:4ω3) accounting for 35.4 and 9.6% of total lipid, respectively. Phylogenetic analysis based on 18S ribosomal DNA sequences suggested that the HDMA-20 belonged to genus Monoraphidium (Selenastraceae, Sphaeropleales) and its 18S rDNA sequence information turned out to be new molecular record of Monoraphidium species. The biomass productivity and lipid content of HDMA-20 were also investigated under autotrophic condition. The biomass productivity of HDMA-20 reached 36.3 mg L− 1 day− 1, and the lipid contents was 22.6% of dry weight.ConclusionHDMA-20 not only represent an additional source of ALA, but also a totally new source of ETA. The high content of ω-3 PUFAs, especially ALA, of HDMA-20, makes it suitable as a source of nutrition supplements for human health. In addition, HDMA-20 exhibited good properties in growth and lipid accumulation, implying its potential for cost-effective ω-3 PUFAs production in future.

Highlights

  • Polyunsaturated fatty acids (PUFAs) have two main classes of fatty acids, omega-6 (ω-6) and omega-3 (ω-3) polyunsaturated fatty acids (PUFAs)

  • Phylogenetic analysis based on 18S ribosomal DNA sequences suggested that the HDMA-20 belonged to genus Monoraphidium (Selenastraceae, Sphaeropleales) and its 18S rDNA sequence information turned out to be new molecular record of Monoraphidium species

  • In this study, a novel microalgal strain HDMA-20 was identified as Monoraphidium sp. and was tested for its fatty acid composition

Read more

Summary

Introduction

Polyunsaturated fatty acids (PUFAs) have two main classes of fatty acids, omega-6 (ω-6) and omega-3 (ω-3) PUFAs. ALA exhibits a variety of health benefits, such as endogenous neurorestoration [6], reducing the risk of nonfatal acute myocardial infarction and coronary heart disease [7, 8], and anti-cancer effect [9]. In mammalian cells ALA is the substrate of a series of elongation and desaturation reactions to generate long chain ω-3 PUFAs. Eicosatetraenoic acid (ETA, C20:4ω3) is an intermediate metabolite in the ω-3 pathway. With many research focused on the health benefit of ALA, the biochemical function of ETA has been little investigated. It is suggested that low levels of ETA and high levels of vaccenic acid (C18:1ω7) were significantly associated with disease severity and mortality in the chronic heart failure [12]. The natural source of ETA is remaining to be explored

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.