Abstract
The interplay between chirality and topology nurtures many exotic electronic properties. For instance, topological chiral semimetals display multifold chiral fermions that manifest nontrivial topological charge and spin texture. They are an ideal playground for exploring chirality-driven exotic physical phenomena. In this work, we reveal a monopole-like orbital-momentum locking texture on the three-dimensional Fermi surfaces of topological chiral semimetals with B20 structures (e.g., RhSi and PdGa). This orbital texture enables a large orbital Hall effect (OHE) and a giant orbital magnetoelectric (OME) effect in the presence of current flow. Different enantiomers exhibit the same OHE which can be converted to the spin Hall effect by spin-orbit coupling in materials. In contrast, the OME effect is chirality-dependent and much larger than its spin counterpart. Our work reveals the crucial role of orbital texture for understanding OHE and OME effects in topological chiral semimetals and paves the path for applications in orbitronics, spintronics, and enantiomer recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.