Abstract

BackgroundAlthough recent studies have greatly advanced understanding of deep molluscan phylogeny, placement of some taxa remains uncertain as different datasets support competing class-relationships. Traditionally, morphologists have placed Monoplacophora, a group of morphologically simple, limpet-like molluscs as sister group to all other conchiferans (shelled molluscs other than Polyplacophora), a grouping that is supported by the latest large-scale phylogenomic study that includes Laevipilina. However, molecular datasets dominated by nuclear ribosomal genes support Monoplacophora + Polyplacophora (Serialia). Here, we evaluate the potential of mitochondrial genome data for resolving placement of Monoplacophora.ResultsTwo complete (Laevipilina antarctica and Vema ewingi) and one partial (Laevipilina hyalina) mitochondrial genomes were sequenced, assembled, and compared. All three genomes show a highly similar architecture including an unusually high number of non-coding regions. Comparison of monoplacophoran gene order shows a gene arrangement pattern not previously reported; there is an inversion of one large gene cluster. Our reanalyses of recently published polyplacophoran mitogenomes show, however, that this feature is also present in some chiton species. Maximum Likelihood and Bayesian Inference analyses of 13 mitochondrial protein-coding genes failed to robustly place Monoplacophora and hypothesis testing could not reject any of the evaluated placements of Monoplacophora.ConclusionsUnder both serialian or aculiferan-conchiferan scenarios, the observed gene cluster inversion appears to be a convergent evolution of gene arrangements in molluscs. Our phylogenetic results are inconclusive and sensitive to taxon sampling. Aculifera (Polyplacophora + Aplacophora) and Conchifera were never recovered. However, some analyses recovered Serialia (Monoplacophora + Polyplacophora), Diasoma (Bivalvia + Scaphopoda) or Pleistomollusca (Bivalvia + Gastropoda). Although we could not shed light on deep evolutionary traits of Mollusca we found unique patterns of gene arrangements that are common to monoplacophoran and chitonine polyplacophoran species but not to acanthochitonine Polyplacophora.Graphical abstractComplete mitochondrial genome of Laevipilina antarctica Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-016-0829-3) contains supplementary material, which is available to authorized users.

Highlights

  • Recent studies have greatly advanced understanding of deep molluscan phylogeny, placement of some taxa remains uncertain as different datasets support competing class-relationships

  • General structure/architecture of the monoplacophoran mitogenomes Mitogenomes of Vema ewingi and L. antarctica are 17,910 bp and 18,642 bp in length, respectively. Both genomes include the complete set of 37 bilaterian mitochondrial genes: 13 protein-coding genes (PCGs), two ribosomal RNAs, and 22 transfer RNAs

  • Seven Transfer RNA (tRNA) in L. antarctica and six in Vema ewingi can be found on the opposite strand

Read more

Summary

Introduction

Recent studies have greatly advanced understanding of deep molluscan phylogeny, placement of some taxa remains uncertain as different datasets support competing class-relationships. The significance of “living fossil” monoplacophorans for deep molluscan systematics was soon recognized [3], and Monoplacophora (with about 30 recent members called Tryblidia [4]) were central in several palaeontological, morphological and cladistic analyses (e.g., [5,6,7,8]) that tried to resolve the phylogeny of Mollusca. These analyses resulted in a number of different phylogenetic placements being hypothesized for Monoplacophora. The Serialia hypothesis, which is based on ribosomal DNA dominated data, is provocative, since it challenges traditional taxonomic text-book hypotheses

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call