Abstract
The reactions of sodium (aza-15-crown-5)dithiocarbamate with [AuClL] precursors lead to mono-, di-, or hexanuclear derivatives depending on L. The homoleptic hexanuclear gold(I) cluster [Au6(S2CNC10H20O4)6] is formed by displacement of the chloride and isocyanide ligands in [AuCl(CN(2,6-Me2C6H3))]. X-ray diffraction studies show a novel geometry in gold cluster chemistry where the six gold atoms display a cyclohexane-like geometry in a chair conformation with Au-Au-Au angles of 117.028(9) degrees, two short gold-gold distances of 2.9289(5) A, and bidentate bridging dithiocarbamate ligands. The molecular structure shows a crown of gold atoms surrounded by crown ethers. This derivative luminesces at 569 nm at room temperature in the solid state. A dinuclear isomer [Au2(S2CNC10H20O4)2] had been reported previously and was obtained by reaction with [AuCl(SMe2)]. The mechanism to obtain the hexanuclear derivative involves a mononuclear intermediate [Au(S2CNC10H20O4)(CNR)] for which the X-ray structure shows a short gold-gold distance of 3.565 A with the two molecules in an anti configuration. Phosphine gold(I) mononuclear derivatives [Au(S2CNC10H20O4)(PR3)] (R = Me, Ph, both characterized by X-ray diffraction) and dinuclear diphosphine derivatives [{Au(S2CNC10H20O4)}2(mu-P-P)] (P-P = dppm, bis(diphenylphosphinomethane); dppp, 1,3-bis(diphenylphosphinopropane); and dppf, 1,1'-bis(diphenylphosphinoferrocene)) are also reported. In the mononuclear complexes, the molecular structure confirms that the dithiocarbamato ligand is mainly acting as monodentate, with a second longer Au-S distance of 3.197 (PMe3), 2.944(4) (PPh3), and 2.968 A (CNR). Three phosphine complexes are emissive at 562 (PMe3), 528 (PPh3), and 605 nm (dppm), at 77 K. X-ray diffraction studies of the dppm derivative show gold-gold intramolecular contacts of 3.0972(9) A (3.2265(10) A for a second independent molecule) and basically monodentate coordination of the dithiocarbamato ligands. All the complexes extract sodium and potassium salts from aqueous solutions. The diphosphine derivatives are noticeably better extractors than the monophosphino derivatives, mainly for potassium salts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.